Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Dev Ind Pharm ; 50(3): 248-261, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38317433

ABSTRACT

OBJECTIVE: To develop Plectranthus amboinicus extract loaded Polyurethane foam dressing for burn wound healing. SIGNIFICANCE: Plectranthus amboinicus is traditionally used as an anti-inflammatory and wound-healing agent. Its incorporation in a PU foam dressing will offer the dual benefits of foam dressing as well as the healing potential of P. amboinicus. METHODS: PU foam dressings were prepared and loaded with P. ambionicus leaf extract (PAE). The dressings were prepared with varying concentrations (0.5-2%) of extract along with Toluene diisocyanate, polypropylene glycol (PPG), and liquid paraffin. The dressings were characterized by Scanning Electron Microscopy and evaluated for Moisture Vapor Transmission Rate, absorption rate, porosity, and mechanical strength followed by in vivo burn wound-healing studies in comparison to a marketed dressing. RESULTS: The MVTR was found to be optimum in formulations FD2-FD4 with values ranging from 2068.06 ± 0.99 to 2095.00 ± 0.25 g/m2/day. Absorption rate was found to be between 1.27 ± 0.01, 1.31 ± 0.00, and 1.30 ± 0.02 g/cm2 for formulations FD2-FD4. Formulations FD1, FD2, FD3, FD4 showed better porosity when compared to other formulations. Formulation FD4 was further characterized by micro-CT and a porosity of 46.32% was obtained. Tensile strength measurement indicated that the selected formulations were flexible enough to withstand regular handling during dressing changes. Acute dermal irritation performed on rabbits showed no irritation, erythema, eschar, and edema. In vivo wound-healing studies performed on albino wistar rats showed that the FD4 formulation has better wound healing property. CONCLUSION: Plectranthus ambionicus-loaded PU foam dressing demonstrated promising burn wound-healing potential.


Subject(s)
Burns , Plectranthus , Rats , Animals , Rabbits , Wound Healing , Bandages , Burns/drug therapy , Surgical Wound Infection , Polyurethanes
2.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38256935

ABSTRACT

Tamanu oil has traditionally been used to treat various skin problems. The oil has wound-healing and skin-regenerating capabilities and encourages the growth of new skin cells, all of which are helpful for fading scars and hyperpigmentation, as well as promoting an all-around glow. The strong nutty odor and high viscosity are the major disadvantages associated with its application. The aim of this study was to create bigels using tamanu oil for its anti-scarring properties and predict the possible mechanism of action through the help of molecular docking studies. In silico studies were performed to analyze the binding affinity of the protein with the drug, and the anti-scarring activity was established using a full-thickness excision wound model. In silico studies revealed that the components inophyllum C, 4-norlanosta-17(20),24-diene-11,16-diol-21-oic acid, 3-oxo-16,21-lactone, calanolide A, and calophyllolide had docking scores of -11.3 kcal/mol, -11.1 kcal/mol, -9.8 kcal/mol, and -8.6 kcal/mol, respectively, with the cytokine TGF-ß1 receptor. Bigels were prepared with tamanu oil ranging from 5 to 20% along with micronized xanthan gum and evaluated for their pH, viscosity, and spreadability. An acute dermal irritation study in rabbits showed no irritation, erythema, eschar, or edema. In vivo excisional wound-healing studies performed on Wistar rats and subsequent histopathological studies showed that bigels had better healing properties when compared to the commercial formulation (MurivennaTM oil). This study substantiates the wound-healing and scar reduction potential of tamanu oil bigels.

SELECTION OF CITATIONS
SEARCH DETAIL
...